Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness
نویسندگان
چکیده
Plants are subjected to various abiotic stresses, such as drought, extreme temperature, salinity, and heavy metals. Abiotic stresses have negative impact on the physiology and morphology of plants through defects in the genetic regulation of cellular pathways. Plants employ several tolerance mechanisms and pathways to avert the effects of stresses that are triggered whenever alterations in metabolism are encountered. Phytohormones are among the most important growth regulators; they are known for having a prominent impact on plant metabolism, and additionally, they play a vital role in the stimulation of plant defense response mechanisms against stresses. Exogenous phytohormone supplementation has been adopted to improve growth and metabolism under stress conditions. Recent investigations have shown that phytohormones produced by root-associated microbes may prove to be important metabolic engineering targets for inducing host tolerance to abiotic stresses. Phytohormone biosynthetic pathways have been identified using several genetic and biochemical methods, and numerous reviews are currently available on this topic. Here, we review current knowledge on the function of phytohormones involved in the improvement of abiotic stress tolerance and defense response in plants exposed to different stressors. We focus on recent successes in identifying the roles of microbial phytohormones that induce stress tolerance, especially in crop plants. In doing so, this review highlights important plant morpho-physiological traits that can be exploited to identify the positive effects of phytohormones on stress tolerance. This review will therefore be helpful to plant physiologists and agricultural microbiologists in designing strategies and tools for the development of broad spectrum microbial inoculants supporting sustainable crop production under hostile environments.
منابع مشابه
Study of phytohormones effects on UV-B stress seeds of thyme species
Background & Aim: Thymus vulgaris L. and Thymus daenensis Celak (Thyme), members of the family Lamiaceae, are widely used in Iranian folk medicine. The aim of this research was to study how salicylic acid (SA), gibberellin (GA), and indole acetic acid (IAA)-seed priming affect UV-B radiation in seeds of Thyme (T. vulgaris, T. daenensis </...
متن کاملStudy of phytohormones effects on UV-B stress seeds of thyme species
Background & Aim: Thymus vulgaris L. and Thymus daenensis Celak (Thyme), members of the family Lamiaceae, are widely used in Iranian folk medicine. The aim of this research was to study how salicylic acid (SA), gibberellin (GA), and indole acetic acid (IAA)-seed priming affect UV-B radiation in seeds of Thyme (T. vulgaris, T. daenensis </...
متن کاملHow Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum
Plants interact with a huge variety of soil microbes, ranging from pathogenic to mutualistic. The Fusarium oxysporum (Fo) species complex consists of ubiquitous soil inhabiting fungi that can infect and cause disease in over 120 different plant species including tomato, banana, cotton, and Arabidopsis. However, in many cases Fo colonization remains symptomless or even has beneficial effects on ...
متن کاملAn overview of plant growth promoting rhizobacteria and their influence on essential oils of medicinal plants: a review article.
One of the important and necessary practices for improving nutrients availability in sustainable agriculture is using microorganisms. Beside the negative effects of chemical fertilizers on the soil and human health, plant growth promoting rhizobacteria are known as an alternative to supply the organic nutrients of plants during the past two decades. Enriching soil fertility by eco-friendly meth...
متن کاملTwo-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms
Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic lev...
متن کامل